CS143 Handout 22
Summer 2010 July 23,2010

Intermediate Representation

Handout written by Maggie Johnson and revised by Julie Zelenski.

Most compilers translate the source program first to some form of intermediate
representation and convert from there into machine code. The intermediate
representation is a machine- and language-independent version of the original source
code. Although converting the code twice introduces another step, use of an
intermediate representation provides advantages in increased abstraction, cleaner
separation between the front and back ends, and adds possibilities for re-

targeting /cross-compilation. Intermediate representations also lend themselves to
supporting advanced compiler optimizations and most optimization is done on this
form of the code.

There are many intermediate representations in use (some suggests it may be as many
as a unique one for each existing compiler) but the various representations are actually
more alike than they are different. Once you become familiar with one, it’s not hard to
learn others. Intermediate representations are usually categorized according to where
they fall between a high-level language and machine code. IRs that are close to a high-
level language are called high-level IRs, and IRs that are close to assembly are called
low-level IRs. For example, a high-level IR might preserve things like array subscripts
or field accesses whereas a low-level IR converts those into explicit addresses and
offsets. For example, consider the following three code examples (from Muchnick),
offering three translations of a 2-dimensional array access:

Original High IR Mid IR Low IR
float a[10][20]; tl = ali, j+2] tl =) + 2 rl =[fp - 4]
ali]lj+2]; t2 =i * 20 r2 =[rl1 + 2]
t3 =tl1 +1t2 r3 =[fp - 8]
td =4 * t3 ré =r3 * 20
t5 = addr a rs5 =r4 +r2
t6 = t5 + t4 ré =4 *rb
t7 = *t6 r7 =fp — 216
fl1=1[r7 + r6]

The thing to observe here isn’t so much the details of how this is done (we will get to
that later), as the fact that the low-level IR has different information than the high-level
IR. What information does a high-level IR have that a low-level one does not? What
information does a low-level IR have that a high-level one does not? What kind of
optimization might be possible in one form that might not in another?

High-level IRs usually preserve information such as loop-structure and if-then-else
statements. They tend to reflect the source language they are compiling more than
lower-level IRs. Medium-level IRs often attempt to be independent of both the source
language and the target machine. Low-level IRs tend to reflect the target architecture
very closely, and as such are often machine-dependent. They differ from actual
assembly code in that there may be choices for generating a certain sequence of
operations, and the IR stores this data in such a way as to make it clear that choice must
be made. Sometimes a compiler will start-out with a high-level IR, perform some
optimizations, translate the result to a lower-level IR and optimize again, then translate
to a still lower IR, and repeat the process until final code generation.

Abstract Syntax Trees

A parse tree is an example of a very high-level intermediate representation. You can
usually completely reconstruct the actual source code from a parse tree since it contains
all the information about the parsed program. (It’s fairly unusual that you can work
backwards in that way from most IRs since much information has been removed in
translation).

More likely, a tree representation used as an IR is not quite the literal parse tree
(intermediate nodes may be collapsed, groupings units can be dispensed with, etc.), but
it is winnowed down to the structure sufficient to drive the semantic processing and
code generation. Such a tree is usually referred to as an abstract syntax tree. (The
opposite, a tree that provides a 1:1 mapping without collapsed nodes and with all
terminals at the leaves is called a concrete syntax tree.) In the programming projects so
far, you have already been immersed in creating and manipulating such an abstract
syntax tree. Each node represents a piece of the program structure and the node will
have references to its children subtrees (or none if the node is a leaf) and possibly also
have a reference to its parent.

Consider the following excerpt of a programming language grammar:

program -> function_list

function_list -> function_list function | function
function -> PROCEDURE ident (params) body
params ->

A sample program for this language:

PROCEDURE mai n()
BEA N

statenent. ..
END

PROCEDURE factorial (n: | NTEGER)
BEA N

statenent. ..
END

The literal parse tree (or concrete syntax tree) for the sample program looks something
like:

Here is what the abstract syntax tree looks like (notice how some pieces like the parens
and keywords are no longer needed in this representation):

TOUD WY

e

N ST T A
v
T oy

The parser actions to construct the tree might look something like this:

function: PROCEDURE ident (parans) body
{ $$ = MakeFunctionNode($2, $4, $6); }

function list: function_list function
{ $$ = $1; $1->AppendNode($2); }

What about the terminals at the leaves? Those nodes have no children; usually these
will be nodes that represent constants and simple variables. When we recognize those
parts of the grammar that represent leaf nodes, we store the data immediately in that
node and pass it upwards so it can participate in the larger tree.

constant : int_constant
{ $$ = Makel nt Const ant Node($1); }

AST To Assembly

With an abstract syntax tree in place, we can now explore how it can be used to drive a
translation. As an example application, consider how a syntax tree for an arithmetic
expression might be used to directly generate assembly language code. Let's assume
the assembly we are working with is for a simple machine that has a collection of
numbered registers. Its limited set of operations include LOAD and STORE to read and
write from memory and two-address forms of ADD, MULT, etc. which overwrite the first
operand with the result. We want to translate expressions into the proper sequence of
assembly instructions during a syntax-directed translation. Here is a parse tree
representing an arithmetic expression:

expression
<) ™~
expression b op expressign
P | VST
variable + expr/asion b _op expron
I
a/ variable * variable

| I
b C

In going from the parse tree to the abstract syntax tree, we get rid of the unnecessary
non-terminals, and leave just the core nodes that need to be there for code generation:

Here is one possible data structure for an abstract expression tree:

typedef struct _tnode {

char | abel;

struct _tnode *lchild, *rchild;
} tnode, *tree;

To generate code for the entire tree, we first generate code for each of the subtrees,
storing the result in some agreed-upon location (usually a register), and then combine
those results. The function Gener at eCode below takes two arguments: the subtree for

which it is to generate assembly code and the number of the register in which the
computed result will be stored.

voi d GenerateCode(tree t, int resultRegNum {
if (IsArithmeticOp(t->label)) {
Cener at eCode(t->l eft, resultRegNum;
Cener at eCode(t->right, resultRegNum + 1);
CGenerateArithneti cOp(t->label, resultRegNum resultRegNum + 1);
} else {
Cener at eLoad(t->l abel , result RegNum ;

}
}
bool IsArithmeticQp(char ch) {

return ((ch =="+") || (ch =="-") || (ch =="*") || (ch =="/"));
}

voi d GenerateArithnmeticOp(char op, int regl, int reg2) {
char *opCode;
switch (op) {
case '+': opCode = "ADD';
br eak;
case '-': opCode = "SUB";
br eak;
case '*': opCode = "MIL";
br eak;
case '/': opCode = "D V';
br eak;

}
printf("% RV, R¥@\n", opCode, regl, reg2);
}

voi d GeneratelLoad(char c, int reg) {
printf("LOAD %, R¥@\n",c , regq);
}

In the first line of Gener at eCode, we test if the label of the root node is an operator. If
it’'s not, we emit a load instruction to fetch the current value of the variable and store it
in the result register. If the label is an operator, we call Gener at eCode recursively for
the left and right expression subtrees, storing the results in the result register and the
next higher numbered register, and then emit the instruction applying the operator to
the two results. Note that the code as written above will only work if the number of
available registers is greater than the height of the expression tree. (We could certainly
be smarter about re-using them as we move through the tree, but the code above is just
to give you the general idea of how we go about generating the assembly instructions).

Let’s trace a call to Gener at eCode for the following tree:

The initial call to Gener at eCode is with a pointer to the '+' and result register 0.

Cener at eCode(' +', 0)
Cener ateCode('a', 0)
wite "LOAD a, R0O"
Cener at eCode(' *', 1)
CenerateCode('-', 1)
CenerateCode('b', 1)
wite "LOAD b, R1"
CenerateCode('c', 2)
wite "LOAD ¢, R2"
wite "SUB R1, R2"
Cener at eCode('d', 2)
wite "LOAD d, R2"
wite "ML Rl, R2"
wite "ADD RO, R1"

We end up with this set of generated instructions:

LOAD a,
LQAD b,
LOAD c,
SUB R1,
LQAD d,
MULT R1, R2
ADD RO, R1

SSIRE

Notice how using the tree height for the register number (adding one as we go down
the side) allows our use of registers to not conflict. It also reuses registers (R2 is used
for both c and d). It is clearly not the most optimal strategy for assigning registers, but
that’s a topic for later.

Direct Acyclic Graphs

In a tree, there is only one path from a root to each leaf of a tree. In compiler terms, this
means there is only one route from the start symbol to each terminal. When using trees
as intermediate representations, it is often the case that some subtrees are duplicated. A
logical optimization is to share the common subtree. We now have a data structure
with more than one path from start symbol to terminals. Such a structure is called a

directed acyclic graph (DAG). They are harder to construct internally, but provide an
obvious savings in space. They also highlight equivalent sections of code and that will
be useful later when we study optimization techniques, such as only computing the
needed result once and saving it, rather than re-generating it several times.

a*b+ar* b

expression

C bi nar|)l/_op)

expression

_— | T~

expl'on binary_op expression
variable * variable

a b

gee's Intermediate Representation

The gcc /g++ compiler uses an abstract syntax tree to capture the results from its

yacc /bi son parser. The compiler is written in C, not C++, thus the nodes are not C++
objects, like Decaf nodes. Instead, each tree is a C pointer to a structure with a tag field
to identify the node type (function, for loop, etc,) and there are various functions and
macros to pick out the individual fields that are appropriate for each type of node. The
tree representation is used for each function. Once a function is parsed the tree
representation of that function is translated to an intermediate language called RTL
(register-transfer language). RTL is inspired by Lisp lists. It has both an internal form,
made up of structures that point to other structures, and a textual form that is used in
the machine description and in printed debugging dumps. The textual form uses
nested parentheses to indicate the pointers in the internal form. Here is the RTL output
for a simple hello, world program:

Function main

(note 3 2 4 "" NOTE_I NSN_FUNCTI ON_BEG
(note 6 4 7 0 NOTE_I NSN_BLOCK_BEQ
(insn 7 6 8 (set (reg:Sl 106)
(high:SI (synbol _ref:SI ("*.LLC0")))) -1 (nil)
(nil))
(insn 8 7 10 (set (reg:Sl 8 %0)
(lo_sum Sl (reg: Sl 106)
(symbol _ref:SI ("*.LLCO")))) -1 (nil)
(nil))

(call _insn 10 8 12 (parallel][
(set (reg:Sl 8 %0)

(call (mem Sl (synbol _ref:Sl ("printf")) 0)
(const _int 0 [0x0])))
(cl obber (reg:SlI 15 %7))
1) -1(nil)
(nil)
(expr _list (use (reg:Sl 8 %0))

(nil)))
(note 12 10 13 0 NOTE_I NSN_BLOCK_END)
(note 13 12 15 "" NOTE_I NSN_FUNCTI ON_END)

RTL is a fairly low-level IR. It assumes a general purpose register machine and
incorporates some notion of register allocation and instruction scheduling. The gcc
compiler does most of its optimizations on the RTL representation, saving only
machine-dependent tweaks to be done as part of final code generation.

Java Byte Code

Java’s standard compiler (j avac) compiles to bytecode which is itself an intermediate
representation. Here is the Java bytecode generated for a simple hello, world program.

Met hod Mai n()
0 aload O
1 invokespecial #1 <Method java.lang. Qoj ect () >
4 return

Met hod void main(java.lang.String[])
0 getstatic #2 <Field java.io.PrintStream out >
3 Idc #3 <String "Hello world">
5 invokevirtual #4 <Method void println(java.lang. String)>
8 return

Java bytecode is a fairly high-level IR. It is based on stack-based machine architecture
and includes abstract notions such as get st ati c and i nvokevi rt ual along with more
low-level instructions such as | dc (load constant) and add.

Bytecode is targeted to a virtual machine, although there are, in fact, hardware-
embodiments of this machine (e.g., the "Java chip" CPU), in most cases, the bytecodes
need to be further translated to machine code. The javac compiler does not handle the
usual back-end task of converting the IR to machine code, it is instead done by an
interpreter within the Java virtual machine (or possibly by a JIT code generator instead
of an interpreter). Some compilers translate either Java source code or Java bytecode all
the way down to native code (gcj , for instance).

Bibliography
A. Aho, J.D. Ullman, Foundations of Computer Science, New Y ork: W.H. Freeman, 1992.

10

A. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques, and Tools, Reading,
MA: Addison-Wesley, 1986.

J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill,
1990.

S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA: Morgan
Kaufmann, 1997.

A. Pyster, Compiler Design and Construction. New York, NY: Van Nostrand Reinhold,
1988.

